Share your story
The central voice for Linux and Open Source security news
Home News Topics Advisories HOWTOs Features Newsletters About Register

Sign up!
EnGarde Community
What is the most important Linux security technology?
Linux Events
Linux User Groups
Link to Us
Security Center
Book Reviews
Security Dictionary
Security Tips
White Papers
Featured Blogs
All About Linux
DanWalsh LiveJournal
Latest Newsletters
Linux Security Week: March 23rd, 2015
Linux Advisory Watch: March 20th, 2015
LinuxSecurity Newsletters
Choose Lists:
About our Newsletters
RSS Feeds
Get the LinuxSecurity news you want faster with RSS
Powered By

Security Assurance Measure Requirements

4.4. Security Assurance Measure Requirements

As noted above, the CC has a set of possible assurance requirements that can be selected, and several predefined sets of assurance requirements (EAL levels 1 through 7). Again, if you're actually going to go through a CC evaluation, you should examine the CC documents; I'll skip describing the measures involving reviewing official CC documents (evaluating PPs and STs). Here are some assurance measures that can increase the confidence others have in your software:

  • Configuration management (ACM). At least, have unique a version identifier for each TOE release, so that users will know what they have. You gain more assurance if you have good automated tools to control your software, and have separate version identifiers for each piece (typical CM tools like CVS can do this, although CVS doesn't record changes as atomic changes which is a weakness of it). The more that's under configuration management, the better; don't just control your code, but also control documentation, track all problem reports (especially security-related ones), and all development tools.

  • Delivery and operation (ADO). Your delivery mechanism should ideally let users detect unauthorized modifications to prevent someone else masquerading as the developer, and even better, prevent modification in the first place. You should provide documentation on how to securely install, generate, and start-up the TOE, possibly generating a log describing how the TOE was generated.

  • Development (ADV). These CC requirements deal with documentation describing the TOE implementation, and that they need to be consistent between each other (e.g., the information in the ST, functional specification, high-level design, low-level design, and code, as well as any models of the security policy).

  • Guidance documents (AGD). Users and administrators of your product will probably need some sort of guidance to help them use it correctly. It doesn't need to be on paper; on-line help and "wizards" can help too. The guidance should include warnings about actions that may be a problem in a secure environemnt, and describe how to use the system securely.

  • Life-cycle support (ALC). This includes development security (securing the systems being used for development, including physical security), a flaw remediation process (to track and correct all security flaws), and selecting development tools wisely.

  • Tests (ATE). Simply testing can help, but remember that you need to test the security functions and not just general functions. You should check if something is set to permit, it's permitted, and if it's forbidden, it is no longer permitted. Of course, there may be clever ways to subvert this, which is what vulnerability assessment is all about (described next).

  • Vulnerability Assessment (AVA). Doing a vulnerability analysis is useful, where someone pretends to be an attacker and tries to find vulnerabilities in the product using the available information, including documentation (look for "don't do X" statements and see if an attacker could exploit them) and publicly known past vulnerabilities of this or similar products. This book describes various ways of countering known vulnerabilities of previous products to problems such as replay attacks (where known-good information is stored and retransmitted), buffer overflow attacks, race conditions, and other issues that the rest of this book describes. The user and administrator guidance documents should be examined to ensure that misleading, unreasonable, or conflicting guidance is removed, and that secrity procedures for all modes of operation have been addressed. Specialized systems may need to worry about covert channels; read the CC if you wish to learn more about covert channels.

  • Maintenance of assurance (AMA). If you're not going through a CC evaluation, you don't need a formal AMA process, but all software undergoes change. What is your process to give all your users strong confidence that future changes to your software will not create new vulnerabilities? For example, you could establish a process where multiple people review any proposed changes.



Latest Features
Peter Smith Releases Linux Network Security Online
Securing a Linux Web Server
Password guessing with Medusa 2.0
Password guessing as an attack vector
Squid and Digest Authentication
Squid and Basic Authentication
Demystifying the Chinese Hacking Industry: Earning 6 Million a Night
Free Online security course (LearnSIA) - A Call for Help
What You Need to Know About Linux Rootkits
Review: A Practical Guide to Fedora and Red Hat Enterprise Linux - Fifth Edition
Yesterday's Edition
OpenSSL Mystery Patch is No Heartbleed
Study: One-third of top websites vulnerable or hacked
Threat-sharing cybersecurity bill unveiled
Partner Sponsor

Community | HOWTOs | Blogs | Features | Book Reviews | Networking
 Security Projects |  Latest News |  Newsletters |  SELinux |  Privacy |  Home
 Hardening |   About Us |   Advertise |   Legal Notice |   RSS |   Guardian Digital
(c)Copyright 2015 Guardian Digital, Inc. All rights reserved.