LinuxSecurity.com
Share your story
The central voice for Linux and Open Source security news
Home News Topics Advisories HOWTOs Features Newsletters About Register

Welcome!
Sign up!
EnGarde Community
Login
Polls
What is the most important Linux security technology?
 
Advisories
Community
Linux Events
Linux User Groups
Link to Us
Security Center
Book Reviews
Security Dictionary
Security Tips
SELinux
White Papers
Featured Blogs
All About Linux
DanWalsh LiveJournal
Securitydistro
Latest Newsletters
Linux Advisory Watch: October 24th, 2014
Linux Security Week: October 20th, 2014
Subscribe
LinuxSecurity Newsletters
E-mail:
Choose Lists:
About our Newsletters
RSS Feeds
Get the LinuxSecurity news you want faster with RSS
Powered By

  
Queueing Disciplines for Bandwidth Management

Chapter 9. Queueing Disciplines for Bandwidth Management

Now, when I discovered this, it really blew me away. Linux 2.2/2.4 comes with everything to manage bandwidth in ways comparable to high-end dedicated bandwidth management systems.

Linux even goes far beyond what Frame and ATM provide.

Just to prevent confusion, tc uses the following rules for bandwith specification:

mbps = 1024 kbps = 1024 * 1024 bps => byte/s
mbit = 1024 kbit => kilo bit/s.
mb = 1024 kb = 1024 * 1024 b => byte
mbit = 1024 kbit => kilo bit.
Internally, the number is stored in bps and b.

But when tc prints the rate, it uses following :

1Mbit = 1024 Kbit = 1024 * 1024 bps => bit/s

9.1. Queues and Queueing Disciplines explained

With queueing we determine the way in which data is SENT. It is important to realise that we can only shape data that we transmit.

With the way the Internet works, we have no direct control of what people send us. It's a bit like your (physical!) mailbox at home. There is no way you can influence the world to modify the amount of mail they send you, short of contacting everybody.

However, the Internet is mostly based on TCP/IP which has a few features that help us. TCP/IP has no way of knowing the capacity of the network between two hosts, so it just starts sending data faster and faster ('slow start') and when packets start getting lost, because there is no room to send them, it will slow down. In fact it is a bit smarter than this, but more about that later.

This is the equivalent of not reading half of your mail, and hoping that people will stop sending it to you. With the difference that it works for the Internet :-)

If you have a router and wish to prevent certain hosts within your network from downloading too fast, you need to do your shaping on the *inner* interface of your router, the one that sends data to your own computers.

You also have to be sure you are controlling the bottleneck of the link. If you have a 100Mbit NIC and you have a router that has a 256kbit link, you have to make sure you are not sending more data than your router can handle. Otherwise, it will be the router who is controlling the link and shaping the available bandwith. We need to 'own the queue' so to speak, and be the slowest link in the chain. Luckily this is easily possible.

    
Partner

 

Latest Features
Peter Smith Releases Linux Network Security Online
Securing a Linux Web Server
Password guessing with Medusa 2.0
Password guessing as an attack vector
Squid and Digest Authentication
Squid and Basic Authentication
Demystifying the Chinese Hacking Industry: Earning 6 Million a Night
Free Online security course (LearnSIA) - A Call for Help
What You Need to Know About Linux Rootkits
Review: A Practical Guide to Fedora and Red Hat Enterprise Linux - Fifth Edition
Yesterday's Edition
Disaster as CryptoWall encrypts US firm's entire server installation
Now Everyone Wants to Sell You a Magical Anonymity Router. Choose Wisely
Partner Sponsor

Community | HOWTOs | Blogs | Features | Book Reviews | Networking
 Security Projects |  Latest News |  Newsletters |  SELinux |  Privacy |  Home
 Hardening |   About Us |   Advertise |   Legal Notice |   RSS |   Guardian Digital
(c)Copyright 2014 Guardian Digital, Inc. All rights reserved.